ASIP Design Route

Introduction

The ASIP design route intends to produce a working embedded processor to execute on the FPGA, with an instruction set tailored towards the LAME and PGP integrated application. Earlier on in the project, the processor model was outlined. A MIPS-based instruction-set was chosen due to the availability of a MIPS compiler for GCC, as well as the team’s familiarity with MIPS assembly code. It was also decided that a Harvard architecture should be implemented to exploit the multiple memory banks on the FPGA.

A major part of this design route is modification of GCC to produce machine code for execution by the ASIP. This is fully detailed in a separate chapter.

Analysis

It was originally intended to create the ASIP prototype in C, then port it to Handel-C once it had been verified. This was to be done either from scratch, or by modifying the source code from SPIM, the generic MIPS simulator.

SPIM

SPIM is a cycle-correct simulator for MIPS R2000 and R3000 assembly language programs, which provides a simple debugging interface and a limited run-time support system. It implements almost the entire MIPS-32 instruction-set, excepting only some of the more complex floating point comparisons.

One of the advantages of basing our processor on SPIM included the fact that full source code is available, the model is cycle-correct (it can understand delayed branches and jumps produced when the assembly code is optimised and assembled) plus it comes with a torture-test for verifying ports to new target architectures. The are also some drawbacks with using SPIM as a basis for our processor, the most significant being the complexity. As SPIM implements nearly all of the MIPS-32 instruction-set, it is far more complex than is required by this project, and it would take the team a significant time to familiarise themselves with the SPIM source code. Furthermore, for the team to fully understand the ASIP architecture it is more sensible to implement the prototype from scratch using a limited instruction-set to verify the data-path and control flow, before incrementally adding necessary instructions. It was therefore decided to use SPIM only for the purposes of testing the output of GCC, and not as a basis for the ASIP.

Prototyping in C and Handel-C

It was reasoned that the ASIP should be prototyped in C due to the team’s extensive experience with the C language, as compared to its limited knowledge of Handel-C. Initially, a grossly simplified processor model was produced in C, which read instructions from a generic assembly code file and executed them sequentially. This gave members of the team an understanding of the execution cycles of a processor, although was not useful in demonstrating instruction decoding, or any form of parallelism.

At this point it was decided to move to Handel-C to complete the prototype. The Handel-C language provides support for parallelism, as well as a superior collection of bit selection operators. This makes instruction decoding more simplistic, and allows certain parts of the code to occur concurrently (for example, fetch and execute cycles).

[image: image1.wmf]Program

Memory

Data

Memory

General

Registers

Instruction

Register

Program

Counter

Read

Instruction

Increment

Program

Counter

Write to

Instruction

Register

Fetch

To Host Program

Read From

Instruction

Register

Read From/

Write To

Memory

Decode

Instruction

Change

Program

Counter

Test

Condition

True

Perform

Operation

Calculate

Address

Read

Operands

Calculate

Offset

Read

Operands

False

Load/Store

General

Operation

Branch

Jump

Execute

Cycle Start

Cycle End

Control Path

Data Path

Operation

(1 tick)

Choice

(0 ticks)

Detailed Design

Figure 1 – Detailed Schematic of ASIP showing Data and Control Paths

Processor Core

The processor core has two main components, both executing in parallel, thus achieving a simple two-stage pipeline as shown in Figure 1. The two stages use intermediate registers to communicate – the Program Counter and the Instruction Register. To ensure the integrity of these shared memory locations, each stage of the pipeline guarantees it will only write to the locations at specific points. It is possible to determine in Handel-C exactly how long each expression will take to execute, expression evaluation taking no time, and the assignment operator taking one clock tick. If the “execute” stage only reads from the Instruction Register on tick one, and the “fetch” stage only writes to it on tick three, integrity can be maintained. Both stages synchronise at the end of the cycle, and therefore data integrity is maintained. This is demonstrated in Figure 2.

[image: image2.wmf]Increment

Program

Counter

Read

Instruction

Write

Instruction to

Register

Read

Operands In

Parallel

Execute

Instruction

Read

Instruction

from Register

Instruction

Register

Tick

Tick

Tick

1 Cycle

Time

Figure 2 – Diagram Showing Interactions with Instruction Register

The ASIP uses Harvard architecture, which means that the data and program buses are separate. This is achieved by placing instructions in one FPGA memory bank, and program data (i.e. the stack and the heap) in another. The further memory banks will be used by the System and I/O functions to communicate shared data between the FPGA and the host program.

Host Program

A host program is required for the ASIP, to perform a number of key functions including the following.

Initialising the FPGA
On compilation of the Handel-C ASIP, a “bit-file” is generated which must be loaded onto the FPGA to execute. The RC1000 support software provides a library and program headers to allow this to be done in the host program.

Loading the Program
The application to be executed by the ASIP must be loaded from disk by the host program and placed in the FPGA memory bank dedicated to program data. The instructions will be read sequentially as 32-bit words, and placed in consecutive positions on the FPGA. The Gnu tool-chain produces ELF binaries when it compiles programs for the MIPS, and so it is hoped these can be read directly by the host program.

Loading the Data
Although most of the data will come from file I/O reads, there is usually some data embedded within the executable file. The host program will read this data from the executable file and place it in the relevant databank on the FPGA.

Handling System Calls
As all of the system and I/O cannot be directly handled by the ASIP, they must be passed to the host program using a pre-defined I/O protocol, or embedded as assembly language in the source code and implemented as additional operations by the ASIP. In the former case, the variables and data being passed to the system call must be passed to the host computer via the FPGA board memory banks, at which point the ASIP will suspend until the I/O call has been completed by the host program. Once the call has been completed, control will pass back to the ASIP to continue execution.

In the case of a functional unit to be added to the FPGA, for instance, the square root function, the new operation will be embedded as assembly code in the C source code. When the ASIP reaches this new instruction, it will execute a special function on the FPGA. Although this will mean a delay in the ASIP execution cycle, it will be significantly more efficient than executing the square root function in software on the host computer.

Implementation

The ASIP is being implemented using an iterative model. Starting with very simple programs, the main framework of the code has been implemented. The programs are then being gradually increased in complexity (for example, moving from addition and subtraction to multiplication and division, programs with recursive function calls, etc…). At each stage, the program is run step by step until an unrecognised op-code is found. The operation is then implemented, and the program restarted. Execution of the program terminates when a “jump register” operation changes the program counter to zero (this happens because the return address is initially zero on entry of the “main” function).

With a working ASIP framework, the processor is being ported from a Handel-C simulation to a Handel-C hardware implementation. With intelligent use of pre-processor directives, the functionality of the simulator is maintained whilst the hardware version is developed – this means op-codes can be added and debugged at a later date without the need for FPGA execution. The majority of the porting process for the ASIP itself consists of adjusting memory mappings to suit the FPGA board API. Furthermore, a complexity not encountered in simulation mode is the development of the host program alongside the ASIP. It is envisaged that once the ASIP has been ported to hardware and tested with the simple programs used to test the simulation version, the instruction set will be incrementally expanded and tested as required by the application.

System calls which appear in the source code shared header file will be implemented depending on their specific type. For example, memory functions such as “memcpy” or “malloc” will be implemented as Handel-C functions where possible, as both the ASIP and the host computer are able to access the memory banks, but the host computer would incur a greater communication overhead. Mathematical functions such as “sqrt” can be implemented on the ASIP as an additional op-code, and are expected to give a slight performance improvement over the original system call. I/O functions such as “fopen” and “fprintf” will pass control to the host program by embedding “syscall” operations as assembly code in the C function.

Testing

Due to the complexity of the ASIP, testing must occur in a methodical, controlled, and modular way. Initial verification of the control structures took place in the Handel-C simulation stage, using the Handel-C debugger and a simple program which had been manually verified. This stage of testing was very time consuming, and involved stepping through the code one clock tick at a time. Many initial bugs were discovered and corrected in this way, most of them relating to memory addressing.

Every addition to the processor’s instruction set must be tested individually for correctness, particularly to highlight problems with coercion between signed and unsigned integer types. This is why the Handel-C simulation is still useful, as compilation for the FPGA takes a great deal of time.

Finally, each system call implemented on, or on behalf of the ASIP must be extensively tested for correctness. The strategy for these will involve the ASIP executing a simple section of code, and the results compared with the expected results. This must be repeated for several test data.

GCC and the Gnu Tool-chain

Introduction

GCC is the Gnu Compiler Collection, a retargetable compiler with front-ends for many programming languages, and back-ends for many machine architectures. Along with its companion programs (collectively known as “binutils”), it can produce executable code for many types of computer. There are many existing ports of GCC and binutils, as well as documentation on how to generate a new machine description. The team decided to use GCC under Cygwin, which is a UNIX-like interface to Windows. This enables easy switching between the tasks of compilation, execution, etc.

The Tool-chain

[image: image3.wmf]C/C++ Source Code

(file.c)

GCC Preprocessor &

Compiler

Gnu Assembler

Assembly Code

(file.s)

Object File

(file.o)

Gnu Linker

Executable File

Libraries

The Gnu tool-chain consists of three distinct phases. The first of these phases is compilation, and is performed by GCC itself. This takes a program from any one of the supported languages and produces an assembly language program for the target architecture.

Subsequent stages are all carried out by utilities in the “binutils” collection, although these are all called from GCC, giving the impression of a single stage of compilation. The next stage is assembly, and is carried out by the “gas”, the Gnu assembler. This optimises and assembles the assembly code, producing object files. Object files contain the raw machine code for the target machine, however they do not contain entry points or the fundamental data constructors required for executables.

Finally, the Gnu linker, “gld” takes one or more object files, analyses the dependencies and links them together with the machine-dependent standard libraries for the desired architecture. The output of this phase is the executable file.

Targeting a Specific Architecture

For the purposes of this project, it was decided to initially take an existing machine description and make modifications to that, rather than write a complete machine description from scratch. The MIPS architecture was chosen as a starting point, partly due to the availability of a GCC port, as well as the ease of implementing an ASIP based on MIPS.

When building a cross-compiler, GCC needs to be configured for the required target. This involves running a configuration script provided with the GCC source code, and providing it with certain options. For example, if the host system does not have a cross-assembler and linker, the compiler must be told to use the Gnu assembler and linker. Much of the required information is inferred by the script. Modification of the target architecture is achieved through what are known as RTL or “register transfer language” files. These provide the compiler with a description of the interactions between the registers of the machine, along with translations between high-level language statements and assembly code. Initially, no modifications were necessary to the compiler, as it was important to verify its output before making any changes. In this way we could be sure of whether we were introducing errors.

Before GCC can be compiled, binutils needs to be compiled. This is configured in much the same way as GCC, and compiles without difficulty. The programs are all given the prefix “mips-“ to help the compiler differentiate from the system tools and the cross-compiler tools.

The compilation process of GCC consists of several stages. Firstly, as there are sections of GCC that can only be built by GCC, a “boot-strap” compiler is built. This generates x86 code for the host architecture, not the target architecture. The boot-strap compiler then goes on to compile the main compiler. This lengthy process appears to go without difficulty, and results in an executable compiler being produced. However, the third stage of GCC compilation fails, with the message that the compiler is incapable of producing executable files. It was discovered that this problem lies not in the actual compilation of GCC, nor its correctness, but in the absence of native MIPS libraries with which to link. The failure is merely a problem with the testing of the compiler, and not with the building of the compiler.

Testing and Verification

Testing of GCC itself was relatively straightforward, although exhaustive testing is very time consuming. As no modifications were made to the GCC source code as yet, the initial step taken was to search on the Internet for any known problems with this particular version of GCC (version 3.0.3). After finding no problems, some simple programs were compiled using the “-S” switch, which produces assembly code, but does not call the assembler or linker. The results of this were good, after verification both manually and with SPIM.

Libraries

Problems were encountered at the linking stage of compilation, which failed with an error referring to a missing library, “crt0.o”. This is a C runtime library, which in particular is used to initialise the data segments of the executables. Without this library, the compilation would not complete. Extensive Internet searches showed that GCC could be called with the switch “-nostdlib”, a switch that causes the standard C runtime libraries not to be included in the linking process. This switch removed most of the errors, leaving just one – an undefined reference to “__main”. Closer inspection of the intermediate assembly code revealed an instruction linking the function “__main”, and removing this instruction caused the error to cease. Research into “__main” has shown that it is an initialisation routine, and does not affect the functionality of the assembly code for the most part.

It is envisaged that partial functionality of the libraries will be achieved at a later stage in the project by generating simplified versions in C. In particular, constructors and the very low-level system calls may be implemented in the libraries, but in a way which fits closely with the chosen ASIP communication protocol.

Verifying Executables

Once the initial library problems had been resolved, executables could be produced in ELF format. However, with little knowledge of this format it was difficult to both verify and use the executable. The solution lay in a utility that is part of “binutils”, called “objdump”. This utility reads ELF files and produces formatted outputs of various parts of the binary, depending on the command-line switches specified. Most useful was the “-D” switch, which disassembles the machine code, showing the corresponding MIPS instruction mnemonic adjacently. This was useful for both manually verifying the code, and also for prototyping the ASIP (the machine code could be pasted into a file for reading by a Handel-C channel). Completeness dictates that the host program for the ASIP should be able to directly read the executable file in its native format, thus skipping this intermediate stage. This is discussed further in the ASIP design chapter.

Conclusion

GCC and the Gnu tool-chain were initially chosen due to their flexibility and portability over other existing compilers. There have been some problems with the use of GCC, both with compiling and with using the compiler, however these have been issues relating more to the target architecture than the compiler itself, which has been verified as producing correct code. Overall, the flexibility of GCC has proved useful to the project, as source code in many different languages could be directly targeted at the ASIP.

� EMBED Visio.Drawing.4 ���

� EMBED Visio.Drawing.4 ���

� EMBED Visio.Drawing.4 ���

� � HYPERLINK http://www.cs.wisc.edu/~larus/spim.html ��http://www.cs.wisc.edu/~larus/spim.html�

[image: image4.wmf]C/C++ Source Code

(file.c)

GCC Preprocessor &

Compiler

Gnu Assembler

Assembly Code

(file.s)

Object File

(file.o)

Gnu Linker

Executable File

Libraries

[image: image5.wmf]Program

Memory

Data

Memory

General

Registers

Instruction

Register

Program

Counter

Read

Instruction

Increment

Program

Counter

Write to

Instruction

Register

Fetch

To Host Program

Read From

Instruction

Register

Read From/

Write To

Memory

Decode

Instruction

Change

Program

Counter

Test

Condition

True

Perform

Operation

Calculate

Address

Read

Operands

Calculate

Offset

Read

Operands

False

Load/Store

General

Operation

Branch

Jump

Execute

Cycle Start

Cycle End

Control Path

Data Path

Operation

(1 tick)

Choice

(0 ticks)

[image: image6.wmf]Increment

Program

Counter

Read

Instruction

Write

Instruction to

Register

Read

Operands In

Parallel

Execute

Instruction

Read

Instruction

from Register

Instruction

Register

Tick

Tick

Tick

1 Cycle

Time

_1077579724.vsd

_1077636163.vsd

_1077578001.vsd

